Víte, že..?

CRISPR je zkratka pro „clustered regularly interspaced short palindromic repeats“ označující konkrétní technologii úpravy genů. Základem CRISPR je bakteriální imunitní systém, který si bakterie vyvinuly, aby byly chráněny před virovou infekcí způsobenou bakteriofágem. Jednoduše řečeno, pokud se DNA viru (fága) dostane do bakteriální buňky, bakterie je schopna DNA fága začlenit do svého genomu. V případě opakované virové infekce bakterie informaci uloženou v CRISPRu využívá k vytvoření obranných mechanismů, které napadají DNA fága a za pomoci proteinu – enzymu nukleáza Cas9 – ji v určitém místě rozštěpí a fága tak zničí.

Metodou CRISPR se dá poměrně jednoduše změnit genetická výbava celých organismů. CRISPR má potenciál do budoucna doslova měnit medicínu a umožnit nejen snazší a rychlejší léčbu, ale také předcházet mnoha nemocem. V současné době má CRISPR využití především při genové terapii dědičných chorob, jako např. hemofilie,  nebo diabetes, ale právě i při modifikaci např. potravinářských plodin.

S objevem technologie CRISPR se otevřela i možnost změny genomu člověka. Pokus o genetickou úpravu lidských embryí byl zaznamenán v Číně. Čínský vědec Ťien-kchuej Che byl za celý experiment společností odsouzen z etických a morálních důvodů. Existuje však stále i část společnosti, která se domnívá, že se jedná o možnost přínosnou pro další generace.

Zajímavostí rovněž je, že na objevu této velice levné a rychlé metodě, se podílel i jeden Čech – Martin Jínek, jenž byl součástí týmu nominovaného na Nobelovu cenu.

Více informací na toto téma můžete najít zde:

Autorky textu: Kristýna Kliková, Tereza Branyšová

Arktická jablka jsou známá svou výjimečnou šťavnatostí a schopností odolávat hnědnutí po rozkrojení, čímž si uchovávají svou chuť a výživovou hodnotu. Hnědnutí nastává především díky obsahu chemických látek nazývaných polyfenoly, které po reakci se vzdušným kyslíkem vyvolávají hnědnutí dužiny. Tento proces je podnícen aktivitou enzymů polyfenoloxidázy (PPO), které katalyzují již zmíněnou reakci kyslíku s fenoly obsaženými v jablku. Běžně jsou enzymy PPO a polyfenoly odděleny v různých částech jablečných buněk, což udržuje jablka čerstvá (vnitřek jablka má bílou až mírně žlutozelenou barvu). Avšak rozkrojením plodu se tato oddělení naruší a je umožněna interakce enzymu PPO s polyfenoly, což vede ke hnědnutí dužiny. I když některé odrůdy jablek jsou méně náchylné k hnědnutí než jiné, dosud nebyl tento proces zcela eliminován.

Nejjednodušší způsob, jak ovlivnit proces hnědnutí, je potlačení enzymové aktivity PPO. Vědci ze společnosti Okanagan Specialty Fruits využili biotechnologické techniky zvané RNA interference k potlačení aktivity genu řídícího enzym PPO, tzv. „umlčení genu“ (gen anti-PPO) . V případě umlčení genu jablko enzym neuvolňuje a jablko se stává odolným vůči hnědnutí.

Jakmile vědci vytvořili gen anti-PPO, bylo nutné jej bezpečně vložit do genomu jabloně. Pro vytvoření nové odrůdy zvané Arctic Apple vědci začali s pupeny jabloní Golden Delicious, do kterých vložili upravený kus genetického materiálu zvaný transgen, který obsahoval gen anti-PPO. Poté, co bylo ověřeno, že rostliny přijaly transgen, byly pěstovány až do dospělosti, kdy z nich vzešla jablka známá nyní jako Arctic Apple.

Výzkum těchto jablek probíhal po dobu více než 10 let v USA a Kanadě, přičemž arktická jablka byla v roce 2018 schválena pro lidskou potřebu. V současné době se již pracuje na vývoji nových odrůd verze jablek Granny Smith a Fuji, které již získaly schválení od amerického ministerstva zemědělství (USDA). Pokud se tyto jablka, která nehnědnou, prosadí na trhu a stanou se komerčně úspěšnými, mohlo by to představovat významný krok v boji proti plýtvání potravinami. 

Více informací na toto téma můžete najít zde: 

Autorky textu: Kristýna Kliková, Tereza Branyšová

Ječmen patří k tradičním plodinám pěstovaným nejen v České republice, ale je celosvětově významnou plodinou, kterou lze pěstovat bez větších klimatických nároků. EU je dokonce jeho největším producentem, přičemž ročně členské státy EU vypěstují téměř 55 milionů tun zrn ječmene. Výhodnost ječmene pak spočívá v nízkém riziku nekontrolovaného přenosu genů, díky čemuž je samovolné šíření ječmene v životním prostředí považováno za bezpečné.

Vědci z Českého institutu výzkumu a pokročilých technologií – CATRIN, Univerzity Palackého ve spolupráci s vědci z Centra regionu Haná (CRH) se již zabývali genetickou modifikací ječmene za účelem využití jeho zrn jako „bioreaktoru“ pro produkci antimikrobiálních léčiv. Ty by měly účinkovat na mikrobiální kmeny rezistentní k antibiotikům.

Jednou z antimikrobiálních látek produkovaných v zrnech ječmene je katelicidin, což je přírodní antibiotikum produkované většinou savci. Vědci z CRH již vyvinuli technologii, pomocí níž lze tento peptid syntetizovat v obilce GM ječmene ve větších výtěžcích a rozšířit tak jeho využití především v medicíně. 

Využívání zrn ječmene má několik výhod, například poskytují prostředí bez endotoxinů s poměrně nízkým obsahem sekundárních metabolitů. Mezi další výhody patří samosprašnost ječmene, což snižuje možnost nežádoucího přenosu genů na jinou odrůdu nebo fakt, že doposud nebyla pozorována negativní interakce mezi katelicidinem na ječmenem.

Obecně hrají antimikrobiální peptidy významnou roli v imunitním systému mnoha organismů, a konkrétně katelicidin LL-37 (lidský katelicidin) se podílí na antibakteriální aktivitě a na dalších fyziologických reakcích. Principem účinku katelicidinu je narušení buněčné membrány bakterií, která zapříčiní buněčný rozpad a zabraňuje tak šíření bakterií. Katelicidin je využíván zejména k léčbě kožních onemocnění a chronických ran, ale i např. v kosmetice. Doposud byla překážkou v širším využití peptidu výrobní cena, avšak novým objevem při produkci v zrnech GM ječmene se výroba katelicidinu stává dostupnější.

Vědci z CRH ve výzkumu dále pokračují a k jejich dalším cílům v oblasti modifikace ječmene dále patří zlepšení stravitelnosti zrna nebo větší odolnost vůči klimatickým podmínkám.

Více informací na toto téma můžete najít zde: 

Autorky textu: Kristýna Kliková, Tereza Branyšová

Legislativa v USA a Kanadě je založena na konstatování, že metoda přípravy GMO není potenciálně škodlivá a riziko GMO není odvozováno právě od přípravy metody, ale od specifických vlastností GM organismů. Tento předpis platí již od roku 1986 a je z něj patrné, že např. transgenní rostliny s vloženým genem bakterie Bacillus thuringiensis s účinností proti škůdcům jsou posuzovány podle zákona o pesticidech. Z toho vyplývá, že posuzování GMO spadá pod různé instituce, a tím i zákony.

K určitému zpřísnění v USA došlo v červenci 2016, kdy podepsal tehdejší prezident Barack Obama zákon nařizující jednotlivým státům USA zavádět povinné značení GM potravin na obalech. Pro značení GM produktů je možné využívat alternativně i tzv. QR kódy, které lze přečíst pomocí chytrého mobilního telefonu.

V prosinci 2018 zveřejnil ministr zemědělství USA Sonny Perdue informace o normě pro označování potravin přijaté v roce 2016. Norma definuje bioinženýrské potraviny, které obsahují zjistitelný genetický materiál, který byl modifikován určitými laboratorními technikami a nemohl být vytvořen konvenčním šlechtěním nebo nalezen v přírodě. Důsledkem toho je zavedení označování uvedených potravin. Již v únoru 2019 byly tímto logem označeny některé produkty a od 1. ledna 2022 je GMO značení povinné pro všechny potraviny.

V Kanadě je přístup ještě mírnější. Geneticky modifikované plodiny byly poprvé schváleny v roce 1995, téměř bez veřejné diskuze a bez většího upozornění veřejnosti. Dosud nebyla ani schválena povinnost značení GM produktů. Kanadská vláda se též nepodílí na regulaci genového inženýrství, ale pouze na regulaci biotechnologických produktů, tzv. „nových potravin” a “rostlin s novými vlastnostmi“, které vznikly technologiemi tradičního šlechtění a mutageneze, nikoliv genetickou modifikací (cíleným vnášením genu). 

Více informací na toto téma můžete najít zde:

Autorky textu: Kristýna Kliková, Tereza Branyšová

Tým vědců z projektu Transmission:Zero provedl genetickou modifikaci hlavního nositele malárie v subsaharské Africe, komára Anopheles gambiae. Tato úprava umožňuje komárovi produkovat ve svých střevech dva antimikrobiální peptidy po nasátí krve hostitele, které narušují vývoj parazita malárie (Plasmodium sp.). Tím dochází k několikadennímu zpoždění před dalším stádiem vývoje parazita, přičemž komár mezitím často uhyne.

Přenos malárie probíhá poté, co samice komára kousne člověka infikovaného parazitem malárie. Pouze asi 10 % komárů přežije dostatečně dlouho, aby se parazit vyvinul do infekční formy. Cílem týmu je prodloužit tuto dobu tím, že zpomalí vývoj parazita ve střevech komára. Zdržení a zpomalení vývoje parazita představuje důležitý krok v hledání metod blokování přenosu malárie z komárů na lidi.

Aby bylo možné využít genetickou modifikaci k eradikaci malárie v reálném světě, je nutné rozšířit ji z laboratorně upravených a testovaných komárů do volně žijících populací. Klasické křížení by pravděpodobně vedlo k rychlé eliminaci modifikace kvůli přirozenému výběru, proto je klíčové zajistit, aby se anti-parazitární genetická úprava dědila, a tím se rozšířila mezi přirozené populace.

Zatím byly provedeny pouze testy v laboratorních podmínkách, avšak pokud se prokáže bezpečnost a účinnost v reálném prostředí, jednalo by se o zásadní pokrok v boji proti malárii. Vědci z Institutu pro modelování nemocí při Nadaci Billa a Melindy Gatesových již vyvinuli model, který dokáže posoudit vliv a dopad takových genetických úprav na konkrétní africké regiony. Tento model ukázal, že tato modifikace by vedla ke snížení počtu případů malárie v afrických oblastech.

Více informací na toto téma můžete najít zde: 

Autorky textu: Kristýna Kliková, Tereza Branyšová

Pro pěstování v Evropské unii byla dosud povolena pouze jediná geneticky modifikovaná (GM) plodina, a to odrůda kukuřice MON810. Nicméně, pro dovoz do EU bylo dosud povoleno 33 typů GM kukuřice, 15 typů GM sóji, 4 typy GM řepky a 12 typů GM bavlníku. K dovozu jsou dále povoleny i výrobky obsahující GM cukrovou řepu. 

Hlavní modifikace GM plodin, které se objevují u všech dovážených druhů, jsou tolerance k neselektivním herbicidům, které účinně likvidují širokou škálu plevelů, odolnost vůči škůdcům a vůči suchu. Cílem modifikace plodin je především snížení ztrát na výnosech, a to právě i zvýšením odolnosti vůči nepříznivým klimatickým vlivům a podmínkám (choroby, škůdci, sucho) nebo zlepšením výživových vlastností (vyšší obsah mikronutrientů). Téměř nulová tolerance neschválených GMO v Evropě má za následek, že v případě detekce i stopového množství nepovoleného GMO v produktech vede k jejich okamžitému stažení z evropského trhu.

K největším dovozcům GM plodin do EU patří státy, kde jsou schvalovací procesy pro povolení GMO výrazně jednodušší, a kde se tyto plodiny pěstují ve velkém měřítku. Mezi tyto země patří USA, Kanada, Argentina nebo Brazílie (sója, řepka, kukuřice). Naopak bavlník je dovážen nejvíce z jižní Asie - Indie.

Více informací na toto téma můžete najít zde: 

Autorky textu: Kristýna Kliková, Tereza Branyšová

Modifikace nejznámější odrůdy sóji, tzv. Roundup Ready®, od firmy Monsanto začala již v 90. letech 20. století. Spočívá v produkci proteinů CP4 EPSPS, díky nimž je plodina odolnější vůči glyfosátu přítomném v herbicidních přípravcích, jako je např. Roundup. I přesto, že jsou neustále vyvíjeny další odrůdy s jinými modifikacemi, Roundup Ready odrůda stále zůstává nejrozšířenější transgenní plodinou na světě.

Jedním z dalších příkladů je modifikace sóji, při níž byl pomocí bakterie Agrobacterium tumefaciens vnesen gen HB4 ze slunečnice, který je zodpovědný za odolnost vůči suchu. Tato úprava má potenciál zamezit každoročním nízkým výnosům způsobeným suchem a nedostatečnou vláhou. Přestože tato odrůda byla tři roky testována a bylo potvrzeno, že je zdravotně nezávadná a neliší se od klasické sóji, nebylo doposud získáno povolení pro dovoz a zpracování této odrůdy v EU.

V současné době pokryje pěstování GM sóji až 80 % celosvětové produkce této plodiny. Ačkoliv byla GM sója vůbec první GM plodinou, která se rozšířila do celého světa, povolení pro dovoz a zpracování bylo získáno jen např. v USA, Brazílii, Argentině či Indii, nikoliv však v afrických státech, kde by její využití bylo ještě více žádanější.

Více informací na toto téma můžete najít zde:

Autorky textu: Kristýna Kliková, Tereza Branyšová

Zlatá rýže, jedna z variant geneticky modifikované rýže, má svůj původ už ve 20. století, kdy se němečtí profesoři Peter Beyer a Ingo Portykus rozhodli začít řešit krizovou situaci s hladomorem a podvýživou, především u dětí v zemích třetího světa. Ty mají zpravidla 2-3 misky rýže na den, přičemž v rozvojových zemích není možné přidávat do rýže další vitaminy a složky pro její obohacení tak, jak by se tato situace řešila v Evropě.

Rostlina klasické rýže obsahuje geny pro tvorbu prekurzoru vitaminu A, které jsou však „vypnuty“ během vývoje rostliny, a zrna běžné loupané rýže tyto geny dokonce neobsahují vůbec. Beyer a Portykus proto již v 90. letech 20. století modifikovali geny klasické rýže tak, aby GM rýže obsahovala více beta-karotenu a geny prekurzoru vitaminu A vypnuté nebyly. 

Beta-karoten, prekurzor vitaminu A, je oranžový pigment, který je klíčovou složkou v metabolismu vitaminu A v našem těle, a tedy je nezbytný pro správné využití vitaminu A v těle. Běžnými zdroji vitaminu A jsou špenát, mrkev, kukuřice, rybí tuk nebo vaječný žloutek. V důsledku nedostatku vitaminu A každý rok oslepne okolo půl milionu lidí na světě. Právě proto bylo nutné vymyslet způsob, jak produkovat více beta-karotenu v nejběžnější potravě východního světa – v rýži.

Nedostatek vitaminu A je častým problémem především v rozvojových zemích (jižní a jihovýchodní Asie, Afrika), kde chronický nedostatek vitaminu A způsobuje  oslabení imunity a slepotu u dětí a slepotu a vážnější orgánové infekce a poruchu imunity u dospělých. Nedostatek vitaminu A je také velmi nebezpečný v těhotenství během třetího trimestru.

Přestože pozitivní účinky zlaté rýže jsou zřejmé, její uvedení na trh vyvolalo kontroverzi především u hnutí Greenpeace. Dodnes jsou různé odrůdy zlaté rýže používány v jihovýchodní Asii, jako např. zlatá rýže Malusog na Filipínách, avšak hromadné kladné stanovisko ohledně pěstování a konzumace zlaté rýže v rámci světa vydáno nebylo.

Více informací na toto téma můžete najít zde:

Autorky textu: Kristýna Kliková, Tereza Branyšová

Karafiáty modré barvy představují první geneticky modifikované květiny, které byly uvedeny na trh. Jedná se o víceletou rostlinu (Dianthus caryophylus), u které je genetická modifikace z hlediska dlouhodobého výnosu výhodnější než u jednoletých rostlin.

Změna barvy na modrou až fialovou je způsobena vložením genů z petúnie a macešky, u nichž umožňují syntézu anthokyanového barviva delfinidinu, jenž je zodpovědný za tvorbu modrého a fialového pigmentu v květech. Delfinidin je přirozeně se vyskytující pigment, který je hojně zastoupen v dalších (i jedlých) plodinách, např. červené odrůdě vinné révy, černém rybízu nebo borůvkách, a není nijak toxický ani alergenní.

Zpočátku byla vyžadována licence pro pěstování, distribuci a vývoz GM karafiátů. Po několika posouzeních regulačních orgánů však nebyla zjištěna žádná rizika spojená s GM karafiáty a od roku 2007 byly karafiáty zařazeny na seznam GMO.

V současné době jsou karafiáty pěstovány hlavně v Jižní Americe, především v Kolumbii a Ekvádoru. V Evropě je schválen jen dovoz GM karafiátů. Pod komerčními názvy, jako MoonshadeTM, MoonshadowTM nebo MoonvistaTM jsou pěstovány a dováženy karafiáty mimo EU, zejména do USA, Kanady, Japonska nebo Malajsie. Přestože původ GM karafiátů je v Austrálii, ne všechny odrůdy tam mají povolení k pěstování. K dovozu GM karafiátů zpět do Austrálie tak dochází z jihoamerické Kolumbie či Ekvádoru, kde je pěstování povoleno.

Více informací na toto téma můžete najít zde:

Autorky textu: Kristýna Kliková, Tereza Branyšová

V současné době je v EU umožněn dovoz a zpracování pouze 5 geneticky modifikovaných (GM) rostlinných druhů v celkem 94 odrůdách, a to bavlníku, kukuřice, řepky, sóji a cukrové řepy. Přestože některé z těchto plodin (kukuřice, sója) patří k základním rostlinným surovinám, které tvoří až 60 % lidské stravy, jsou povoleny pouze jako krmiva, nikoliv jako potraviny na trhu EU.

O schvalování GM potravin a krmiv rozhodují jak odborníci z jednotlivých členských států, tak Evropský úřad pro bezpečnost potravin (EFSA). Pokud je GM produkt schválen, autorizace trvá jen po dobu 10 let, a pak je nutné projít dalším schvalovacím procesem. Dosud byl v EU schválen k pěstování pouze jeden GM rostlinný druh – GM kukuřice MON810, která byla v roce 2022 pěstována ve Španělsku a Portugalsku. Administrativní náročnost a přísná pravidla ohledně pěstování GMO v EU však vedla k ukončení jejího pěstování.

Ve světě, mimo EU, jsou GM produkty schvalovány rychleji a především jednodušeji. V současné době je povoleno již 577 odrůd z 32 rostlinných druhů. Naposledy byl na konci června loňského roku v Norsku schválen nový rostlinný zdroj omega-3 mastných kyselin v produktu Aquaterra®. Tento olej je z GM řepky olejné a má sloužit jako potrava pro ryby chované na farmách, kterým oproti mořským rybám chybí omega-3 mastné kyseliny. Přítomnost omega-3 mastných kyselin má vliv na vývoj těchto ryb i na kvalitu masa, a současně také mohou přispět ke snížení tlaku na výlov mořských ryb.

Dalším příkladem je povolení k pěstování GM pšenice označované jako HB4® v Paraguayi. Tato pšenice je odolnější proti zhoršeným přírodním podmínkám, zejména suchu. Kromě toho obsahuje gen pro toleranci k herbicidům na bázi glufosinátu (v EU oproti Paraguayi zakázán) a umožňuje tak úplné odstranění plevelu, a tím zvýšení výnosu pšenice. Odrůda HB4® je již povolena v 10 státech, včetně USA, Brazílie nebo Austrálie.

Více informací na toto téma můžete najít zde:

Autorky textu: Kristýna Kliková, Tereza Branyšová

Tento příspěvek byl inspirován přednáškou Ing. Bc. Z. Malinové z Ministerstva zemědělství ČR konané na VŠCHT v Praze v lednu 2024.

Losos je druhou nejčastěji konzumovanou rybou na světě. Až 90 % všech lososů, které konzumujeme, pochází z chovů, protože růst ve volné přírodě již dosáhl svého maxima. Více než polovina (60 %) je z chovů umělých, a proto důležité zaměřit se právě na tento chov lososů. 

AquAdvantage losos, vyvinutý společností AquaBounty Technologies v Maynardu, Massachusetts, je geneticky modifikovaný losos s vyšší produkcí růstového hormonu. Tato modifikace umožňuje několikanásobné zvětšení velikosti lososa a zkrácení doby potřebné k jeho růstu ze 3 let na 18 měsíců, což snižuje spotřebu krmiv. Všechny tyto faktory pak přispívají k žádoucí zvýšené živočišné produkci.

Z lososů by geneticky modifikované měly být jen sterilní samice chované v nádržích a vsádkách. I v případě, že by došlo k uvolnění GM lososa do volné přírody, by tak nemělo dojít k narušení životního prostředí a ekosystému, protože samičky lososa nebudou schopny se dále množit.

Uvedení GM lososa na trh bylo schváleno v listopadu 2015 americkým Úřadem pro kontrolu potravin a léčiv (FDA) a Ministerstvem zemědělství USA (USDA). V současné době probíhá chov těchto lososů v USA a Kanadě, přičemž další zkušební chovy jsou v Brazílii a Argentině. V EU zatím chov geneticky modifikovaných živočichů schválen nebyl.

Více informací na toto téma můžete najít zde:

Autorky textu: Kristýna Kliková, Tereza Branyšová

Brambory patří k nejhojněji pěstujícím se plodinám u nás. Jsou nejen nezbytnou potravinou, ale také zdrojem důležité suroviny – škrobu, především amylopektinu, který je využíván mimo jiné i v textilním, či papírenském průmyslu nebo při výrobě lepidel a tmelů. Narozdíl od běžných brambor, které jsou pěstovány pro potravinářství, GM brambory Amflora byly vyvinuty s jiným cílem, neboť její hlízy byly určeny pro zpracování ve škrobárnách.

Brambory Amflora mají zablokovaný gen pro tvorbu amylosy, jejíž obsah je tak snížen na minimum. Tato vlastnost přináší výhody zejména v průmyslu, kde je co nejnižší množství amylosy ve škrobu žádoucí. Odrůda Amflora zároveň nabízela možnost zvýšeného obsahu amylopektinu, odolnost vůči insekticidům, antibiotikům (kanamycin, neomycin) a dalším faktorům. Tato  kombinace vylepšených vlastností slibovala nárůst produkce brambor a jejich klíčových složek.

Na území ČR se GM brambory pěstovaly jen krátkodobě (2010-2012) ve třech uzavřených podnicích na Vysočině, a to pod dohledem firmy BASF Plant Science. Produkce brambor dle předpokladů vzrostla, avšak kvůli komplikacím s výsadbou bylo v roce 2013 povolení k pěstování této odrůdy v rámci EU zrušeno. Společnost BASF tak následně přesunula veškeré pěstování této odrůdy brambor do Ameriky a Asie.

Více informací na toto téma můžete najít zde:

Autorky textu: Kristýna Kliková, Tereza Branyšová

Genetická modifikace kukuřice MON810 je založena na vložení genu z půdní bakterie Bacillus thuringiensis. Tento gen kóduje Bt toxin, který působí jako účinná ochrana proti většině škůdců, zejména proti zavíječi kukuřičnému. Jeho larvy se živí na klasech kukuřice, a tím rostlinu poškozují. Vzhledem k tomu, jak je kukuřice důležitou plodinou po celém světě, je genetická modifikace velkým pomocníkem.

Modifikací kukuřice a vznikem MON810 se zabývala v 90. letech 20. století společnost Monsanto. Povolení pro komerční pěstování této plodiny v EU bylo schváleno v roce 1998 na dobu 10 let. V roce 2007 byla podána žádost o prodloužení povolení, jejíž schvalování však probíhalo téměř 10 let. Dne 8. července 2016 předložila Evropská komise návrh povolující uvedení potravin a krmiv obsahujících z GM kukuřice MON810 na trh. Návrh byl schválen o rok později, v červenci 2017.

V roce 2016 tvořila kukuřice MON810 přes 30 % ze všech pěstovaných GM plodin po celém světě, což jasně ukazuje význam této plodiny ve světovém zemědělství.

Více informací na toto téma můžete najít zde:

Autorky textu: Kristýna Kliková, Tereza Branyšová

GM rajčata Flavr Savr byla na trh uvedena 18. května 1994 pod značkou MacGregor a jednalo se o vůbec první komerčně prodávaný geneticky modifikovaný produkt na trhu.

Rajče bylo geneticky upraveno tak, aby byla snížena až potlačena aktivita enzymu polygalakturonasy odpovědného za degradaci polysacharidu pektinu. Pektin, obsažený v buněčné stěně rajčat, hraje klíčovou roli v procesu měknutí, hniloby a dozrávání plodů. Snížený rozklad pektinu vedl ke zvýšené odolnosti modifikovaných rajčat a prodloužil jejich trvanlivost. Rajčata se tak mohla sklízet až v případě jejich optimální zralosti a díky modifikaci nedošlo ke znehodnocení plodu během transportu.

Společnost Calgene zabývající se vývojem geneticky modifikovaných rajčat byla však složena především z vědců, kteří nebyli připraveni na tak velký úspěch jejich alternativních rajčat a chtěli pokračovat dále ve vývoji, nikoliv v marketingu jejich produktu. Calgene byla proto prodána nadnárodnímu koncernu Monsanto, který se vydal úplně jinou cestou – cestou schvalování a maximální legalizace GM produktů, která však nikdy nebyla přívětivě přijata veřejností a postupně spěla ke konci rajčat Flavr Savr.

Výroba rajčat Flavr Savr byla ukončena v roce 1997 mimo jiné i jako jeden z důsledků tzv. Pusztaiovy aféry, která vznikla kolem kontroverzního výzkumu Dr. Árpáda Pusztaiho z konce 90. let. Jeho studie tvrdila, že geneticky modifikované brambory negativně ovlivňují krysy, avšak tyto závěry byly ve vědecké komunitě široce kritizovány kvůli chybné metodice a neúplnému odbornému posouzení. Tato studie rovněž otřásla důvěrou veřejnosti v geneticky modifikované produkty, včetně rajčat Flavr Savr, a významně ovlivnila přijetí dalších GM produktů v následujících letech.

Více informací na toto téma můžete najít zde:

Autorky textu: Kristýna Kliková, Tereza Branyšová

Jak v případě šlechtění, tak v případě genetických modifikací jsou vylepšovány vlastnosti plodin, ale i některých rostlin a zvířat – a to již několik desítek let!

Níže představujeme rozdíly mezi oběma technikami se zaměřením na plodiny: 

  • V případě tradičního šlechtění se jedná o křížení plodin s různými vlastnostmi a výsledkem je potomstvo s požadovanými vlastnostmi. 
  • Naopak při genetických modifikacích (GM) je genetických úprav dosahováno změnou genetické informace v genomu plodiny.

Proč to děláme? Protože planě rostoucí plodiny nejsou pro zemědělce ideální. Přirozený výběr a tradiční šlechtění probíhající desítky let umožnily vznik výživově bohatších, a především výnosnějších plodin, avšak ve volné přírodě špatně konkurujících. Genetické modifikace za účelem získání požadovaných vlastností otevřely nové možnosti, jak upravit a následně pěstovat plodiny nejen výnosné, ale zároveň i odolné vůči suchu, nebo škůdcům.

GM jsou klíčové pro zabezpečení dostatečného množství potravin pro rostoucí světovou populaci. I když otázky týkající se bezpečnosti a dlouhodobých dopadů genetických modifikací vyvolávají diskuse, přínosy těchto metod v oblasti zemědělství jsou nezpochybnitelně významné.

Více informací na toto téma můžete najít zde:

Autorky textu: Kristýna Kliková, Tereza Branyšová